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Abstract:

During the past two decades, the world has seen several known and novel zoonotic viruses and deadly bacterial diseases, such as West Nile Virus
(1999 to 2002), Anthrax (2001), H1N1(2009), Ebola (2014), Zika Virus (2016), SARS-CoV (2002), MERS-CoV (2012) and SARS-CoV-2 in
2019. The current ongoing COVID-19 pandemic is completely unpredicted and it has hugely changed our health care systems, global economy and
social lifestyles. SARS-CoV-2 is still under genetic evolution and getting mutated to escape our immune system and showing resistance against
available therapies. In this current research work, we have examined all publicly available scientific literature to date to understand the genetic
evaluation of coronavirus species and their transmission possibilities to humans. We have also explored recently reported mutations of concerns in
viral spike glycoprotein. We then discussed various SARS-CoV-2 preclinical and clinical research breakthroughs and highlighted our limitations
and readiness  to  combat  this  deadly  disease.  Based on our  recent  study,  we have emphasized developing a  global  viral,  fungi  and microbes
platform. It can help us to predict mutations on their genomic, structural and pathophysiological profile to better address early on future threats by
such infectious agents.
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1. INTRODUCTION

The  “severe  acute  respiratory  syndrome  coronavirus  2”
(SARS-CoV-2) also known as COVID-19 is a highly infectious
virus able to cause a novel form of viral  pneumonia that  has
become the number one health challenge around the world [1].
It was first reported in late 2019 in Wuhan, China and has since
spread extensively worldwide and was named by WHO on 12
January  2012  [1,  2].  Considering  the  severity  of  symptoms
among the affected people and rapid spread, the World Health
Organization  (WHO)  declared  COVID-19  as  a  pandemic  on
March 11th, 2020. SARS-CoV-2 is a single-stranded enveloped
ribonucleic acid virus with an average size of 75 to 150 nm and
it belongs to the subfamily Orthocoronavirinae  in the family
Coronaviridae,  Order  Nidovirales  [3].  It  has  shown  almost
85%  structure  similarity  with  SARS-CoV  and  the  main
functions of their structural proteins, such as spike (S) surface
glycoprotein, membrane (M) protein, envelope (E) protein, and
nucleocapsid  (N)  protein,  as  well  as  nonstructural  proteins,
such as RNA polymerase (RdRp), papain-like protease (PLpro)
coronavirus main protease (3CLpro) are also highly conserved
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[4].  Phylogenetic  analysis  shows  bat  coronavirus  RaTG13 is
the most similar and closely associated virus, a virus sampled
from a  horseshoe  bat  (Rhinolophus  affinis)  belonging  to  this
suborder [5].

As of today 28th June, 2021, 179,686,071 confirmed cases
of  COVID-19,  including  3,899,172  deaths,  were  reported  by
WHO (https://covid19.who.int/). Till today, 22.6% people have
received  at  least  one  dose  of  a  COVID-19  vaccine
(https://ourworldindata.org/covid-vaccinations). Although most
of the available vaccines are capable of preventing COVID-19
infections to a high percentage, still COVID-19 positive cases
are observed in the individuals who had received their either
first or second dose of vaccines [6, 7]. Scientists at the Indian
Council  of  Medical  Research  (ICMR)  reported  COVID-19
cases are 0.04% in India after vaccination. A genome sequence
comparison study conducted by the Institute of Genomics and
Integrative Biology (IGIB) revealed that in most of these cases
COVID-19 delta  variant  (B.1.1.7)  was  common with  E484K
and  S477N  mutations  in  spike  protein,  which  help  these
variants  to  escape  from  our  immune  system  [8].

In  total,  122  vaccines  are  in  the  preclinical  development
stage and 92 vaccine candidates are being evaluated in clinical
trials (https://biorender.com/covid-vaccine-tracker). BNT162b2
(Pfizer/BioNTech) and AZD1222 (Oxford-AstraZeneca) were
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the first companies to file for an emergency use authorization
with the United States Food and Drug Administration (FDA)
for  their  coronavirus  vaccine  candidate.  Meanwhile,
mRNA-1273  (Moderna,  Inc),  Ad26.COV2.S  (Johnson  and
Johnson),  CoronaVac  (Sinovac  Biotech)  and  BBIBP-CorV
(Sinopharm)  also  got  their  COVID-19  vaccines  approved  by
FDA.  In  addition  to  SARS-CoV-2  specific  vaccines,
investigations of Measles-Mumps-Rubella vaccine [9, 10], Oral
Polio Vaccine [11] and Bacille Calmette-Guerin vaccines for
their  repurposing potential  against  COVID-19 [12] are being
conducted  under  NCT04333732,  NCT04540185  and
NCT04379336  clinical  trial,  respectively.

We  leveraged  Ontosight®  Discover,  an  artificial
intelligence  based  semantic  discovery  platform  which
understands  biomedical  concepts  and  allows  us  to  identify
relevant  results  in  context  across  multiple  data  sources  like
publications, clinical trials, congresses, theses, patents, grants,
and publicly available databases (https://ontosight.ai/). We did
explore all PubMed indexed journals through this platform to
analyze  the  therapeutic  landscape  and  limitations  of
coronavirus  research.  In  this  current  review  article,  we  have
explored all reported variants of SARS-CoV-2, their origin and
explored  various  in-silico  technologies,  which  are  used  to

accelerate  drug  development.  This  review  also  alerts  and
recommends research areas with the need to prepare for future
viral and biological threats.

2. CORONAVIRUS IS NOT A NEW VIRUS

Numerous coronaviruses were discovered and reported in
poultry around the 1930s, causing respiratory, gastrointestinal,
liver,  and  neurologic  diseases  in  animals.  The  sub-family  of
Coronaviridae,  which  contains  viruses  of  both  medical  and
veterinary  importance,  can  be  divided  into  the  four  genera
alpha (α),  beta (β),  gamma (γ)  and delta  coronavirus (δ)  that
were at approximately 2400 base count (BC), 3300 BC, 2800
BC, and 3000 BC, respectively [13].

Seven  coronaviruses  (α  and  β)  known  to  cause
symptomatic  diseases  in  humans  are  mentioned  in  Table  1.
Four  coronaviruses  (Coronaviruses  229E,  OC43,  NL63,  and
HKU1) cause about 15% to 30% of cases of the common cold
and  pneumonia  in  human  beings.  The  remaining  3
coronaviruses (SARS-CoV-2, MERS-CoV, SARS-CoV) cause
much more severe, and sometimes fatal, respiratory infections
in  humans  than  other  coronaviruses  and  have  caused  major
outbreaks of deadly pneumonia in the 21st century.

Table 1. List of coronaviruses types and their associated hosts and diseases.

Serial
Number Species Coronavirus (Genus) Diseases Taxonomy ID

Alphacoronavirus (α)
1 Human HCoV-229E Common cold 11137
2 Human HCoV-NL63 pneumonia and bronchiolitis 277944
3 Pig TGEV Gastroenteritis 11149
4 Pig Porcine respiratory coronavirus (PRCoV) Mild respiratory disease 11146

5 Pig
Porcine epidemic diarrhea

(PEDV) Gastroenteritis 28295

6 Cat
Feline infectious peritonitis

(FIPV) Peritonitis, pyogranuloma 11135
7 Cat Feline coronavirus (FECV) Subclinical enteric disease 12663
8 Dog CCoV Enteritis 11153

9 Bat
Rhinolophus bat coronavirus HKU2 (Rh-BatCoV-

HKU2) - 693998

10 Bat
Miniopterus bat coronavirus HKU8 (Mi-BatCoV-

HKU8) - 694001
11 Bat Mi-BatCoV 1B - 694000
12 Bat Sc-BatCoV-512 Scotophilus bat coronavirus 693999

Betacoronavirus (β)
13 Human SARS-CoV-2 COVID-19 2697049
14 Human SARS-CoV Severe acute respiratory syndrome 1431340
15 Human MERS-CoV Middle East respiratory syndrome 1335626
16 Human HCoV-OC43 Common cold 31631
17 Human HCoV-HKU1 Common cold 290028
18 Pig PHEV Vomiting and wasting disease, encephalomyelitis 42005
19 Pig SADS-CoV Gastroenteritis, diarrhea 2032731
20 Rat Rat sialodacryoadenitis coronavirus (SDAV) Sialodacryoadenitis, mild pneumonia 92931
21 Rat Rat coronavirus Parker (RCoV-P) Fatal pneumonia 502102
22 Horse ECoV Mild gastrointestinal disease 136187
23 Bovine BCoV (Bovine coronavirus) Enteritis, respiratory disease, pneumonia 11128
24 Bat Pi-BatCoV-HKU5 - 694008

https://ontosight.ai/
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Serial
Number Species Coronavirus (Genus) Diseases Taxonomy ID

25 Bat Ty-BatCoV-HKU4 - 694007
26 Bat Ro-Bat-CoV HKU9 694006
27 Bat SARSr-Rh-BatCoV HKU3 Severe acute respiratory syndrome 333387
28 Human Civet SARS CoV SZ16/2003 (SARSr-CiCoV) Severe acute respiratory syndrome 231515
29 Human Civet SARS CoV SZ3/2003 Severe acute respiratory syndrome 231513
30 Equine Equine Coronavirus (ECoV) - 136187
31 Giraffe GiCoV Severe diarrhea
32 Rat RCoV Severe acute respiratory 31632

33 Antelope
Sable antelope coronavirus US/OH1/2003

(AntelopeCoV) - 422138
34 Mouse MHV Murine coronavirus MHV-1 502106
35 Dog Canine respiratory coronavirus (CRCoV) Mild to severe respiratory disease, pneumonia 215681

Gammacoronavirus ((γ))
36 Chicken IBV Bronchitis, nephritis -
37 Turkey TCoV Contagious enteric disease in turkeys 19184806
38 Whale BWCoVSW1 Pulmonary disease, terminal acute liver failure -

Deltacoronavirus (δ)
39 Pig Porcine deltacoronavirus (PDCoV) Gastroenteritis 1586324
40 Bulbul HKU11 Respiratory disease 574549
41 Avian HKU12 Thrush coronavirus 1297662
42 Avian HKU13 munia coronavirus 1297661
43 Porcine PorCoV HKU15 undifferentiated febrile illness 1159905
44 Vertebrates WECoV HKU16 White eye coronavirus 1159907

45 Sparrow
sparrow coronavirus HKU17 (SpCoV

HKU17) Respiratory disease 1159906
46 Avian MRCoV HKU18 Magpie robin 1159903
47 Night heron NHCoV HKU19 - 1159904

48 Wigeon
Wigeon coronavirus HKU20 (WiCoV

HKU20) - 1159908
49 Avian CMCoV HKU21 Common moorhen 1159902

The  human  Alphacoronavirus  (HCoV-229E  and  HCoV-
NL63)  and  Beta-coronavirus  (SARS-CoV-2,  SARS-CoV,
MERS-CoV,  HCoV-OC43  and  HCoV-HKU1)  are  derived
from bat and have a high genome similarity with bat  viruses
[14]  whereas,  Gamma-coronavirus  (γ)  and Delta-coronavirus
(δ) are mostly derived from birds and pigs [15]. Recent reports
suggest a transmission to humans as well (specific antibodies
were  found  in  human  plasma  samples  in  Haiti)  [16].
Crosslinking and transmission of these viruses across mammal
species is an evolutionary process [17].

Recent  alteration  of  human  microbiota  in  SARS-CoV-2
patients and secondary fungal and bacterial infections during
the  treatment  of  COVID-19 were  described  [18].  Since  viral
infection increases the susceptibility for secondary infections, it
is  also  important  to  develop  a  strategy  and  guideline  to  deal
with  classes  of  viruses  and  other  micro-organism  together.
Interactions  and  complications  due  to  viruses,  bacteria  and
fungi  together  can  lead  to  critical  clinical  conditions  in  the
future [19].

3. FREQUENT MUTATIONS AND FUTURE THREATS

Multiple  SARS-CoV-2  lineages  and  spike  protein
mutations were reported across the globe, such as Epsilon [20,

21],  Zeta  [22],  Eta  [23],  Theta  [24,  25]
(https://pgc.up.edu.ph/covid19-p3-theta-who/),  Iota  [26]  and
Kappa [27]. These variants mainly affect the receptor binding
domain (RBD). WHO has classified these mutations into two
groups; the first group is “Variants of Interest”, which includes
Eta  (B.1.525),  Theta  (P.3),  Iota  (B.1.526,  B.1.526  and
B.1.617),  Zeta  (P.2)  and  Kappa  (B.1.617.1  and  B.1.617.3)
lineage  and  “Variants  of  Concern”,  which  includes  Alpha
(B.1.1.7),  Beta  (B.1.351),  Epsilon  (B.1.427,  B.1.429),  Delta
(B.1.617.2) and Gamma (P.1).

The  most  common  mutations  in  spike  proteins  for  the
ACE2  receptor  are  A67V,  N501Y,  K417,  L452R and  Q677,
F888L, T95I, D80G, D950H, Q1071H and G142D. Deleterious
mutations  in  coronavirus  spike  protein,  such  as  D614G,
E484K, P681R, E154K, P681R, and V1176F were also found.
These  mutations  on  spike  proteins  help  them  to  escape  the
human immune system and bind to the human host cells which
leads  to  the  resistance  of  available  therapy  and  combination
therapy  especially  with  monoclonal  antibodies  [27,  28].  A
recent study shows more than 44 different mutation locations
in  spike  proteins  [29].  The  B.1.525,  B.1.526,  B.1.526.1,
B.1.617, B.1.617.1, B.1.617.3, P.2 mutations are all  over the
proteins,  including  receptor  binding  domain  (RBD),  which
makes  its  inhibition  more  challenging  (Fig.  1).

(Table 1) contd.....

https://pgc.up.edu.ph/covid19-p3-theta-who/


208   The Open COVID Journal, 2021, Volume 1 Sharma et al.

Fig. (1). SARS-CoV2 spike protein schematic structure (PDB ID: 6VXX) with selected SARS-CoV-2 Variants of Interest. Here, color represents the
three chains (a) Hot pink for Chain - A (b) Limon color for Chain - B and (c) Marine blue color for Chain - C. All mutations have been demonstrated
using Sphere shape.

4.  MAJOR  BREAK  THROUGH  OF  COVID-19
RESEARCH

4.1. Genome Sequencing and Characterization

During the initial  weeks of COVID-19 spread, the world
had major challenges to diagnose, characterize and understand
SARS-CoV-2’  virulence  and  pathogenesis  mechanism.  The
first  major  breakthrough  was  achieved  after  the  successful
characterization  of  SARS-CoV-2  [30].  A  research  team  of
Fudan  University  published  the  complete  genome  of  SARS-
CoV-2 publicly online so that  it  could be utilized further for
quick research and further prevention strategies and therapeutic
development  [31].  The  sequence  reads  generated  from  this
study  are  available  at  GenBank  under  accession  number
MN908947.

4.2. Tertiary Structure of SARS-CoV-2 Proteins

We searched for SARS-CoV-2 proteins in the Protein data
bank (PDB) using a  search  keyword “COVID-19” in  Source
Organism Taxonomy Name (Full Lineage) on 28th June 2021.
It contains 1,277 COVID-19 proteins that have the taxonomy
name  as  “SARS-CoV-2”.  In  total,  284  human  coronavirus

protein structures were identified in PDB, which include X-ray
diffraction  (122)  and  electron  microscopy  (172).  The  first
protein  structure  of  SARS-CoV-2  main  protease  (PDB
ID:6LU7) that was expressed in Escherichia coli BL21(DE3)
was  deposited  on  26th  January,  2020  and  annotated  and
published in PDB for immediate further research [32]. On 06
February, 2020, a watercolor of Coronavirus was published by
David  S.  Goodsell  and  the  team described  coronavirus  entry
mechanisms in the lungs [33].  These experimental  structures
put a base on the early drug discovery on COVID-19.

The SARS-CoV-2 Spike glycoprotein is a 1281 amino acid
protein. It is a homotrimer and each monomer consists of two
domains, S1 and S2 to make one complete spike protein [34].
The  extracellular  N-terminal  domain  S1  (14-685)  helps  in
recognition  and  binding  to  the  host  ACE  receptor  and
internalization of the virus into the endosomes of the host cells
[35, 36].  Intracellular C-terminal S2 (686-1273) during virus
endocytosis  S2  acts  as  a  class  I  viral  fusion  protein  and
mediates fusion of the complete viral genetic materials into the
host cellular membranes [37]. It contains two heptad repeats,
which is  an  ideal  feature  of  the  virus  to  function as  a  fusion
protein (Fig. 2).
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Fig.  (2).  Schematic  of  the SARS-CoV2 Spike glycoprotein primary structure and cleavage sites.  Here,  SP = Single peptide,  NTD = N-terminal
domain; RBD = receptor-binding domain; RBM = receptor-binding motif; IBM = Integrin-binding motif; S1 = Cleavage site 1; S2 = Cleavage site 2;
FP1 = Fusion protein 1; FP2 = Fusion protein 2.

5.  VARIOUS  EXPERIMENTAL  AND  COMPUTATIO-
NAL APPROACHES IN SARS-COV-2

We  queried  Ontosight  Discover®  using  our  life  science
ontology  for  SARS-CoV-2,  which  includes  synonyms  of
SARS-CoV-2  as  “2019ncov,  disease  caused  by  2019-ncov,
coronavirus  disease2019,  sars-cov-ii  disease,  COVID-19,
2019-ncov  infection,  sars-cov-2  disease,  human  coronavirus
2019  (hcov-19),  hcov19,  severe  acute  respiratory  syndrome
coronavirus 2, corona virus disease (COVID-19), novel corona
virus  2019,  2019  ncov,  wuhan  coronavirus  infection,  wuhan
seafood market pneumonia virus infection, 2019ncov infection
and novel  corona  virus2019”  and  searched  for  only  PubMed
Indexed articles from December 1st, 2019 to the date of study
i.e, 28th June 2021. It results in 149,167 articles that had SARS-
CoV-2 related concepts and any one of the synonyms present
in their title, abstracts, keywords or in the full-text body. Out of
these,  18,805  articles  were  under  the  “Review”  category,
113,888  articles  were  under  “Journal  articles”  and  7,690
articles  were  published  as  a  case  report  while  the  remaining

8,784 belonged to the other categories such as congress, meta-
analysis,  etc.  We  explored  these  articles  to  understand  the
contribution of various wet-labs (laboratories where biological
molecules or samples are being analyzed using liquids) and dry
lab (laboratory where computational or applied mathematical
analyses  are  done  with  the  assistance  of  computer-generated
models) techniques associated with COVID-19 to understand
the  SARS-CoV-2  research  gaps  and  identify  future  viral
threats.

Our  study  revealed  that  experimental  studies  (wet  lab)
were published more in number when compared to computer-
based approaches. Most of the experiments were conducted to
understand  the  virus  pathogenesis  and  virus  itself,  such  as
molecular assays for antiviral activity, microscopy and imaging
techniques  and  biochemical  analysis,  whereas  experimental
protein  structure  determination  was  conducted  to  understand
viral proteins. Moreover, expression and multi-omics analysis
were  reported and studied in  various  publications  for  further
therapeutic development (Fig. 3).

Fig. (3). Landscape of wet lab and dry lab technology used in SARS-CoV-2 research published in PubMed.
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Fig. (4). Snapshot of the clinical trial landscape against SARS-CoV-2. (a) demonstrate the trial landscape based on recruitment and drug status (b)
demonstrate number of clinical trials with published results.

Computational  biology  and  the  role  of  artificial
intelligence  also  played  a  crucial  role  to  uncover  various
pathophysiological processes and the origin of this virus. Our
today’s understanding about COVID-19 and recent therapeutic
developments  is  an  excellent  example  of  collaborative
research.  Due  to  the  advance  development  of  artificial
intelligence,  such  as  neural  networks,  machine  learning,
chemoinformatics, system biology, network analysis and large-
scale genomics analysis, it was possible to identify more than
141 repurposable drugs to be tested against COVID-19 (Table
S1).

As  of  today,  5,819  clinical  trials  are  registered  in
clinicaltrials.gov  for  COVID-19  and  associated  disease.  For
5,770 of these clinical trials, the results are yet to be published.
We classified the clinical trials into 3 major classes based on
their  recruiting  status.  The  first  category  is  active  trials;  it
includes  clinical  trial  status  with  “recruiting”,  “active,  not
recruiting”,  “enrolling  by  invitation”  and  “available”  trial
phases. The second category is not active, which includes “not
yet  recruiting”,  “no  longer  available”,  and  “temporarily  not
available” clinical trials and the third category is Closed trials,
which  includes  “completed”,  “withdrawn”,  “terminated”,
“approved  for  marketing”  and  “suspended”  as  mentioned  in
Fig. (4).

The  majority  of  the  trials  are  in  the  active  stage,  which
suggests a number of drug candidates are under investigation to
evaluate  their  treatment  benefits  against  SARS-CoV-2.  We
downloaded  all  these  clinical  trials  and  studied  investigated
drugs and their mechanism of actions to understand the current
therapeutic landscape of SARS-CoV-2.

We identified 373 unique therapeutic agents that are under
clinical trials, out of which 141 drugs are repurposable drugs
(already  approved  drugs  for  other  disease),  while  remaining
232 drugs are either novel therapeutics (specifically proposed
for COVID-19) or not approved for any indication yet. In total,

107 drugs reached clinical  phase 4 (approved for  marketing)
against  various  clinical  studies  associated  with  COVID-19
(Table S2). Until now, only one drug (Remdesivir) is approved
against COVID-19, while for the 3 other drugs, an emergency
use authorization has been granted for mild to moderate SARS-
CoV-2 infections, as shown in Table 2.

Table 2. Emergency use authorization and approved drug
by  U.S.  FDA  for  the  treatment  of  mild  to  moderate
coronavirus  infection

Drug Name MoA Approval
Date Treatment

Remdesivir

RNA-​dependent
RNA

polymerase
(RdRp)

October 22,
2020

Mild, moderate Novel
Coronavirus
Infectious

Bamlanivimab
&

Etesevimab
(LY3819253)

Spike
glycoprotein

February 9,
2021

Mild, moderate Novel
Coronavirus
Infectious

Casirivimab &
Imdevimab

(Regen-COV)

Receptor
binding domain

of the spike
protein of

SARS-CoV-2

November
21, 2020

Mild, moderate Novel
Coronavirus
Infectious

Sotrovimab
Virus

internalisation
inhibitors

May 26,
2021

Mild-to-moderate
COVID-19 in adults

and pediatric patients;
not shown benefit in
patients hospitalized
due to COVID-19

We  identified  373  therapies  (303  candidate  drugs,  15
combinations,  55  other  therapies)  from  5,819  COVID-19
related trials (Table S3). In order to understand the effort and
focus  of  the  pharmaceutical  industry  for  therapeutic
development  against  various  stages  of  COVID-19,  we
classified  these  drugs  into  3  major  classes  based  on  their
therapeutic  use  in  SARS-CoV-2.
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(1) Early infection phase is also known as the incubation
period as in this phase, SARS-CoV-2 multiplies and develops
resistance  in  the  host.  Infection  starts  when  an  uninfected
person inhales COVID-19 containing droplets or aerosols and
the  virus  interacts  with  angiotensin-converting  enzyme  2
receptors  on  human  cells  [38].

(2) Pulmonary phase: The pneumonia phase is divided into
two,  depending  on  the  absence  or  presence  of  hypoxia;
whereby  hypoxic  pneumonia  patients  will  likely  require
hospitalization  and  oxygen  supplementation.

(3) Hyperinflammatory phase is the phase where patients
struggle to take a breath. It is the most severe stage of this viral
infection. An increase in several biomarkers, such as IL2, IL6,
IL7, TNF-alpha and C-reactive protein, indicate this stage [39].
Anti-inflammatory  drugs,  immunomodulators  including
corticosteroids  and  interleukin/cytokine  inhibitors  are
recommended at this stage. This is the most critical stage with
the highest lethality among the three phases.

Further, 22 different mechanisms of actions were prepared
based on their treatment type (Table S3). Our analysis revealed
that most of the ongoing/failed clinical trials are for the early
infection phase of the SARS-CoV-2 (136 drugs) followed by
the hyper-inflammatory phase (119) to improve the standard of
care and reduce morbidity and mortality. Eighty-one drugs are
used in stage 2 to improve the medical  condition of  infected
patients (Table 3). We identified 49 monoclonal antibodies out
of  these  antibodies  are  mainly  developed  as  virus
internalization  agents  (Table  S4)  to  be  used  as  passive
immunological  agents  to  minimize  virulence  in  mild  to

moderate  COVID-19  patients  (https://www.antibody
society.org/COVID-19-biologics-tracker/)  (Fig.  5).

Several antiviral drugs with distinct mechanism of action,
such  as  virus  internalisation  (e.g.  BRII-196,  and  BRII-198),
RNA replicase inhibitors (e.g. Galidesivir), protease inhibitors
(e.g. Lopinavir and Ritonavir), virus replication inhibitors (e.g.
Sofosbuvir  and  Voclosporin),  serine  protease  inhibitors  (e.g.
Camostat  mesylate  and  Tranexamic  acid)  and  dipeptidase
inhibitors (e.g. Brensocatib) are the major drug classes which
were investigated against COVID-19 in various clinical trials.
Similarly, several immunomodulators, such as complement C3
inhibitors (e.g. AMY-101 and APL-9), glucocorticoid receptor
agonists  (e.g.  Apremilast  and  Aprotinin),  CD20  antigen
inhibitors  (e.g.  Ofatumumab)  and  T  lymphocyte  stimulants
were also investigated against COVID-19.

Analysis  of  clinical  studies  also  suggested  that  40  anti-
cancer drugs are also under investigation and majority of these
drugs  belong  to  MAP-kinase-activated  kinase  2  inhibitors,
Tyrosine-protein  kinase  SYK  inhibitor,  JAK  Inhibitor  and
Interleukin 1 receptor antagonists, casein kinase II inhibitors.

In  order  to  control  inflammation  and  bacterial
superinfection  during  the  COVID-19  treatment,  several
antibacterial drugs, such as beta lactamase inhibitors, cell wall
inhibitors,  protein  50S/70S  ribosomal  subunit  inhibitors  and
cell  replacements  drugs  were  also  investigated  in  various
clinical  trials  against  SARS-CoV-2.  Moreover,  in  order  to
prevent  mortality  due  to  cardiac  attack  due  to  blood  clots,
several  anticoagulants,  such  as  Factor  Xa  inhibitors,  blood
coagulation factor inhibitors, plasminogen activators, thrombin
inhibitors are also being tested against COVID-19.

Fig. (5). Various drug classes of SARS-CoV2 under clinical investigations

https://www.antibodysociety.org/COVID-19-biologics-tracker/
https://www.antibodysociety.org/COVID-19-biologics-tracker/
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Table 3. Distribution of various ongoing and failed clinical trial drugs against COVID-19 and their mechanism of action.

Stage of COVID-19 Broad Category of
Mechanism of Actions Drug Example Mechanism in COVID-19 Drug

Count

Stage 1
(Early infection phase)

Antivirals

Remdesivir; Favipiravir;
Lopinavir; Umifenovir;
ADM03820; ADG20;

AZD7442; Apabetalone
(RVX-208) etc.

RNA-​dependent RNA polymerase (RdRp), Viral
membrane fusion; Endocytosis, non-competitive

binding to viral protein, etc [40, 41].
103

Lipid Modulator Statins; Cyclodextrins,
Opaganib etc.

Controlling virus replication. Lipids can act as direct
receptors or entry cofactors for all types of viruses at

the cell surface or the endosomes etc [42].
10

Angiotensin receptor
blockers Losartan; Spironolactone etc.

Cellular entry by decreasing ACE2 receptors
expression and cluster of differentiation 147 (CD147)

etc [43].
8

Interferons IFN-α and β Hinder viral replication, including viral entry 6

Antimalarial Hydroxychloroquine,
Chloroquine etc.

Anti-inflammatory and immunomodulatory activities
in treating COVID-19 [44]. 9

Stage 2
(Pulmonary phase)

Anti-bacterial, incl.
Antibiotics

Azithromycin; Clarithromycin
etc.

Secondary infection reduces the inflammatory
process and modulate the immune system etc [45]. 19

Anti-parasitic Ivermectin; Niclosamide etc. Control viral replication etc [46]. 4

Antioxidants Piperine; Selenium etc.

Reduces the production of IL-1β, IL-6, TNF-α,
COX-2, nitric oxide synthase-2, and NF-κB.
Neutralizes free radicals, ROS, and hydroxyl radicals
[47].

11

Anti-neoplastic
(Anticancer)

Abemaciclib; Ruxolitinib;
Duvelisib; Saracatinib;
Nivolumab, kinase inhibitors
etc.

Inhibition of host intracellular-viral events in viral
life cycle etc [48]. 39

Anti-depression Fluvoxamine
Reduces the production of inflammatory molecule;
controlling neuropsychiatric symptoms of COVID-19
patients etc [49].

4

Antipsychotics Quetiapine; Cerebrolysin etc.
Antipsychotics modulate the expression of
inflammatory cytokines and inducible inflammatory
enzymes [50].

4

Stage 3
(Hyperinflammatory)

Anticoagulants Heparin Anti-thrombin prevents blood clot formation during
cytokine storm etc [51]. 17

Adrenergic Berberine, Prazosin etc. For preventing or reducing acute respiratory distress
syndrome (ARDS) and other complications [43]. 2

Anti-inflammatory Acebilustat; Apremilast Limiting the expression of hyper-inflammatory genes
during hyperinflammatory phase [52]. 29

Immunomodulators
(Corticosteroids) Tocilizumab

Interrupts cellular signals transduction pathway, and
subsequently decreases inflammatory responses etc
[53].

44

Interleukin Inhibitors Clazakizumab; Levilimab etc. To prevent severe damage to lung tissue caused by
cytokine release [54]. 15

Analgesics Ibuprofen Pain management during COVID-19 infection [55,
56]. 2

Antihistamine Desidustat; Famotidine etc. Prevent progression to severe disease in elderly
patients [57] 3

Anesthetic Sevoflurane; Celecoxib etc. To control inflammation and prevent complications
during cytokine storm [58] 3

Opioid Remimazo etc. Ordinary functioning of the immune system and not
recommended against COVID-19 [59] 4

CONCLUSION

Academic and pharma industries are working together at
different  levels  to  identify  the  most  suitable  therapeutic
solutions for SARS-CoV-2. As of now, academic institutions
have  contributed  significantly  to  identifying  genomic  level
information and defining various pathophysiological processes.
Crosslinking  and  ongoing  frequent  mutation  in  COVID-19

proteins is one of the major challenge for identifying the most
effective  therapeutic  and  effective  preventive  strategies.
However,  published  biochemical  studies  serve  a  very  strong
background  to  pharma  industries  and  publicly  funded
institutions for further therapeutic and preventive care solutions
development.

We also understand that it is an ongoing evolution process
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of various viruses and microorganisms that requires continuous
long-term  vigilance  and  surveillance  studies  to  identify  and
address any future pandemic risks. At the same time, we need
to be prepared for any further crosslinking (intermediate host
and  interspecies  transmission)  of  these  viruses,  their  future
mutations and possible transmission in humans. Virus bacterial
interaction  could  also  be  a  major  challenge  in  future.  These
interactions can also indirectly affect the host response to viral
infection and make it the worst health condition [60].

At the same time, therapies against SARS-CoV-2 and pre-
existing secondary infections with viruses (Metapneumovirus,
Coronavirus  HKUetc.),  bacteria  (Klebsiella  pneumoniae,
Acinetobacter  baumannii,  Streptococcus  spp.)  and  fungi
(Candida krusei, Aspergillus spp., Candida glabrata etc.) need
to monitor carefully. Other complications, such as thrombosis
during treatment with diabetic, malignancy, other inflammatory
and cardiovascular disorders need to be improved to control the
mortality  rate  in  hospitalised  coronavirus  infected  patients.
Treatment strategies for various groups of patients need to be
established,  the  mortality  rate  due  to  co-infections  and
comorbidity  in  hospitalised  patients  needs  to  be  improved.
Therefore,  we  recommend  a  personalised  medicines  based
therapy (biomarker based patient groups selection for clinical
decision making), broad spectrum preventive care solution and
immune boosters to immediately address the current standard
of care against this disease.
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