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Abstract:

The coronavirus disease 2019 (COVID-19) has been spreading worldwide since December 2019. It is a significant threat to community healthcare
in all countries worldwide, so policymakers and researchers are paying close attention to it. The most significant components of non-coding RNAs
(ncRNAs) are miRNAs and lncRNAs, which serve as regulatory elements. They are vital ingredients of the transcriptome, with a role in normal
biological reactions and inflammatory processes, including viral infection. In the field of viral infection, microRNAs and non-coding RNAs with
19 to 25 nucleotides receive more attention as they target mRNAs to control gene expression. However, the role of many lncRNAs is yet to be
discovered. In this review, we provide detailed information about the effects of host lncRNAs and viral lncRNAs, interactions between lncRNAs
and their interactions with other ncRNAs, and small membrane vesicles called exosomes and microRNAs in COVID-19 infection. The profile of
ncRNAs in host cells of the SARS-CoV-2 virus is altered. As a result, these changes may serve as valuable indicators for disease development and
severity. Understanding these pathways will help researchers learn more about SARS-CoV-2 pathogenesis and seek more practical treatments to
control cytokine storm and viral life cycle.
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1. INTRODUCTION

The  coronavirus  disease  2019  (COVID-19)  outbreak  has
been  the  most  significant  public  health  epidemic  since  1918
and  has  caused  many  economic  and  health  issues  [1  -  3].
Therefore,  learning  more  about  its  features  and  interactions
with  human  host  cells  is  essential  to  discover  efficient
therapies.  MERS-CoV  and  SARS-CoV-1  are  two  additional
dangerous  human  coronaviruses  that  cause  moderate
respiratory tract disease with a 36% and almost 10% mortality
rate,  respectively  [4].  However,  the  severity  of  COVID-19
differs among patients. The vast majority experience common
cold symptoms that develop into a mild pneumonia case, while
about 14% of persistent cases express severe symptoms such as
shortness of breath [5].
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All  strains  of  single-stranded,  positive  RNA  (+ssRNA)
viruses  make  up  most  of  coronaviruses  [6],  via  an  electron
microscope,  the  presence  of  spike  glycoproteins  on  the
coronavirus envelope gives it a crown-like appearance (Corona
is the Latin word for crown) [7, 8]. When adapting to their new
human hosts, SARS-CoV-2 is susceptible to genetic evolution,
with  mutation  development  over  time,  resulting  in  variants
with different features than their progenitors [2].

Nowadays,  non-coding  RNAs  (ncRNA)  are  used  in
genomic medicine [9]. Regulatory elements such as microRNA
(miRNA), long non-coding RNA (lncRNA), and circular RNA
(circRNA) are non-coding RNAs that control gene expression
rather  than  actively  engaging  in  cell  physiological  activities
[10]. lncRNAs are transcripts with a length of 200 nucleotides
or  more  with  various  roles  in  cell  biology  [11].  The
identification  of  lncRNAs  as  potential  major  regulators  of
inflammatory  genes  suggests  that  they  may  be  required  for
regulating inflammatory responses [12 - 14]. Understanding the
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effect  of  their  altered  expression  levels  and  mechanism  of
action  can  have  a  substantial  impact  on  immunology  and
infectious  diseases.  Scientists  discovered  that  500  lncRNAs
interfered with the cell response to viral infection by examining
SARS-CoV-infected  cells  [15].  They  also  suggest  that  these
non-coding characters in host cells and RNAs have an essential
modulating  role  in  the  antiviral  innate  immune  system.  The
majority  of  lncRNAs  associated  with  viral  infections  co-
express genes involved in maintaining lung homeostasis, and
they have been linked to IFN mechanistic pathways [16].

MicroRNAs  are  non-coding  RNAs  with  19  to  25
nucleotides  that  target  mRNAs  and  cause  translational
repression or mRNA destruction to regulate gene expression.
miRNA is a potent gene regulator that affects virtually every
aspect  of  gene  regulation  [17,  18].  miRNA  regulates  gene
expression  by  targeting  the  3'  and  5'  untranslated  regions  (3'
UTR and 5' UTR, respectively) (UTR) and coding regions [19 -
21].  Furthermore,  microRNAs  significantly  impact  the
production of cytokines, chemokines, and growth factors [22].
Plants, animals, and viruses contain microRNAs with various
biological  roles  [23,  24].  MicroRNA-targeted  therapies  have
been suggested to treat malignancies, viral diseases, and other
illnesses since they are essential regulators of gene expression
[25]. Many miRNAs have been identified as markers in virus-
infected illnesses [26]. MicroRNAs could be encoded by viral
genomes,  encompassing  DNA  and  RNA  viruses.  MiRNAs
generated from viruses may also be synthesized in host  cells
with a function in the life cycle of a virus as well as cellular
consequences [27, 28]. On the other hand, miRNAs may attach
to  complementary  regions  on  the  viral  RNA  sequence,  thus
reinforcing  the  viral  genome's  silencing  effect  and  reducing
protein production [29].

With the aid of miRNA response elements, lncRNAs and
circRNAs  competitively  attempt  to  bind  miRNAs  and  form
competing  for  endogenous  RNAs  (ceRNAs)  [30].  CeRNAs
may  act  as  miRNA  sponges,  controlling  the  production  of
miRNAs  that  target  specific  mRNAs.  The  discovery  of
lncRNA/circRNA aids the development of a ceRNA network,
potentially contributing to the discovery of new and effective
treatment targets [31].

2.  INTERPLAY  BETWEEN  COVID-19  AND  NON-
CODING RNAS

SARS-CoV-2  has  produced  a  large  epidemic  with  a
significant mortality rate throughout the globe, and death rates
are  continuously  increasing  [32].  Understanding  the
relationship  and  effect  of  this  virus  on  human  host  cells  is
critical  [7].  In  the  coronavirus  genome,  spike,  envelope,
membrane,  nucleocapsid,  and  all  structural  proteins  are
encoded by positive-sense RNA [32]. The rapid mutation rate
in the spike nucleotide sequence has been suggested as one of
the causes of SARS-CoV-2’s high transmission rate [33].

Viral resistance is affected by the ncRNA network of host
cells.  Infection  typically  alters  the  expression  patterns  of

ncRNA  in  the  host,  potentially  increasing  viral  proliferation
and  propagation  conditions.  As  a  result,  ncRNAs  boosted
during  the  infection  may  be  efficient  biomarkers  for  disease
progress and severity [7]. Furthermore, viruses are capable of
aggressive conflict against host cells to deplete their metabolic
resources  required  for  viral  proliferation.  They  generate
exogenous ncRNAs, dysregulating the expression of hundreds
of  host  genes  related  to  metabolism  control.  The  ncRNAs
encoded by a number of these affected genes are an essential
part of the virus-induced pathogenic transcriptome in host cells
[34].

LncRNA  transcripts  with  poly(A)  3′  ends  and  5′-capped
terminals  [21]  seem  incapable  of  encoding  proteins.  In  the
human  genome,  there  are  16,193  lncRNAs  discovered  that
could be transcribed from both strands, according to the most
current  GENCODE  V30  release,  but  only  about  3%  of
annotated  lncRNAs  have  been  assigned  a  function  [35,  36].
RNA  polymerase  II  and  III  are  accountable  for  their
transcription  and  are  comparable  to  mRNAs  in  terms  of
evolutionary  conservation.  However,  RNA  polymerase  II
transcribes the bulk of them [30, 37]. LncRNAs have a role in
chromosome  shaping,  miRNA  generation,  and  mRNA
suppression [38]. They may interact with proteins, RNA, DNA,
or a combination of these molecules to mediate their activities,
and their secondary structure and/or sequence might influence
the lncRNAs' responsibilities (Fig. 1) [21].

3. ROLE OF LNCRNAS IN SARS-COV-2 INFECTION

LncRNAs that moderate viral proliferation is categorized
into  two  groups  according  to  their  origin:  host-encoded
lncRNAs  and  virus-encoded  lncRNAs  [20].  Host-virus
lncRNA  interactions  typically  occur  in  the  cell's  cytoplasm,
nucleus, and extracellular spaces [38].

In the first stages of viral infection, host cells begin their
antiviral response by evolving their lncRNA profile, and after
infection, these RNAs express differently. They play a role in
signaling pathways regulating the cell cycle, programmed cell
death, immune response, and gene expression [21]. In addition,
viruses may change the endogenous lncRNA expression of host
cells. In contrast, there is no indication that SARS-CoV-2 can
generate  any  long  non-coding  RNA  (lncRNA)  [15].  So  far,
most  lncRNA  research  has  been  focused  on  cancer.
Meanwhile,  innate  immunity  research  on  lncRNAs  has  been
poor, accounting for just 4% of all lncRNA articles published
so far [19].

The  innate  immune  system  contributes  to  the  formation
and  maturity  of  the  adaptive  immune  system  by  acting  as  a
relatively  quick  response  to  certain  infections  by  inducing
inflammation  [39,  40].  Early  in  the  infection  process,  the
SARS-CoV-2  enters  T  lymphocyte  cells  and  destroys  them,
leaving  patients  with  severe  lymphopenia.  As  a  result,  more
lymphocytes target the heightened inflammatory responses of
the innate and adaptive immune systems, which result in their
death  [41].  The  regulation  of  the  innate  antiviral  immune
response  of  host  cells  is  mediated  by  lncRNAs  [15].
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Fig. (1). Functions of nuclear and cytoplasmic lncRNAs. In the nucleus, nuclear lncRNAs interact with chromatin-modifying complexes and gene
expression. In the cytoplasm, cytoplasmic lncRNAs enhance viral genome replication, gene expression, protein translation, and virus release.

The expression of lncRNAs is related to type I interferon
receptor, signal transducer, and activator of transcription 1 in
the  same  way  it  occurs  in  influenza-infected  cells  [15].
JAK/STAT,  NF-KB,  HIF-1A,  and  MAPK  are  pathways  that
may  regulate  the  synthesis  of  interleukins  through  lncRNAs
[32, 42, 43]. In infected cells with SARS-CoV-2, host-derived
lncRNAs  such  as  MALAT1  and  nuclear-enriched  autosomal
transcript 1 (NEAT1) may also be used as infection biomarkers
[44,  45].  Overexpression  of  metastasis-associated  lung
adenocarcinoma  transcript  1  (MALAT1)  lncRNA  was
observed in SARS-CoV-2 infection, which is also activated in
various  neoplastic  disorders  and  post-lung  transplant
inflammatory conditions [43]. MALAT1 silencing diminishes
the  occurrence  of  SARS-CoV-2  patients'  cytokine  storms  by
inhibiting neutrophil chemotaxis [43]. The expression of both
MALAT1  and  NEAT1,  which  are  immunomodulatory
lncRNAs, is altered in patients with severe symptoms. A study
suggests that NEAT1, MALAT1, and an antiapoptotic lncRNA
named  MTRNR2L12  are  significantly  overexpressed  in  the
bronchoalveolar  lavage  of  severe  patients,  while  their
expression  is  suppressed  in  patients  with  mild  symptoms.
NEAT1 is  only  found  in  sites  of  inflammation  and  infection
[46]. On the one hand, MALAT1 seems significantly expressed
in  CD4+  T  cells  of  individuals  with  moderate  symptoms,
illustrating its protective role in T cells. As a vital protein for
the  COVID-19  virus  to  enter  the  body,  cathepsin  L  (CTSL)
may  be  the  potential  mechanism  for  the  initiation  of  these
lncRNA-mediated inflammatory responses [47].

Another lncRNA linked to virus-induced inflammation is
DANCR,  indicating  a  dramatic  drop  in  inflammation-prone
lung tissues [48].  It  can also regulate the function of  catenin
beta-1, which is a protein that is linked to respiratory illnesses
[49]. Generally, NEAT1 and DANCR can interact with many
ncRNAs,  sponge  miRNAs,  and  transcription  factors  such  as
STAT3 to inhibit inflammation [50]. Through the IL-11/JAK2
pathway,  DANCR  can  activate  STAT3,  a  pro-inflammatory
transcription factor [50]. STAT3 triggers IL-1b, IL-6, NFkB1,
and SPI-1, which are also transcription factors interacting with
TNF,  DANCR,  and  the  NEAT1-associated  protein  DANCR
[51  -  54].  Downregulation  of  DANCR  in  infected  bronchial
epithelial cells is linked to a reduced ACE2 level [55].

Because  lots  of  pathways  involving  miRNAs,  lncRNAs,
and  mRNAs  have  been  reported  to  have  essential  roles  in
characterizing  cellular  activities  in  the  course  of  a  viral
infection,  it's  vital  to  study  these  connections  in  a  unified
manner  to  fully  understand  the  regulatory  non-coding  RNA
networks that underpin SARS-CoV infection [56].

4. ROLE OF MICRORNA IN SARS-COV-2 INFECTION

Viruses are dependent on host cell activity for many stages
of their life cycle. The miRNA pathway is an essential part of
the host's regulatory system [57]. Viruses may interact with the
host miRNA in multiple ways [58]: 1) Host miRNAs that bind
directly to the viral RNA and may control viral translation or
other elements of the viral life cycle. Some of these miRNAs
may have an antiviral impact, allowing the immune system to
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combat  the  disease  or  causing  the  virus  to  enter  a  dormant
condition.  2)  The  virus  may  alter  host  miRNA  expression,
influencing  host  or  viral  RNA  targets.  3)  Some  virus  may
encode their  miRNAs,  which control  the  RNA targets  of  the
host  or  virus  and  may  alter  the  host's  signaling  pathways,
allowing the virus to survive and replicate. Some viruses cause
infected cells to mutate, so there are many links between viral
infection and miRNA expression [59, 60].

To  learn  the  link  between  miRNA  and  COVID-19,  we
must  first  comprehend  the  pathogenic  mechanism  of  SARS-
CoV-2. Inflammatory cytokines, including interleukin-6 (IL-6),
TNF-α, and inflammatory complexes like the inflammasome,
are produced due to ACE-mediated SARS-CoV cell entry [61,
62]. The main contributors to the inflammatory cytokine storm
appear to be the inflammasome, IL-6, and NOD-like receptor
protein  3  (NLRP3)  [63,  64].  miRNA  analogs  suppress  the
production  of  proteins  related  to  the  COVID-19-mediated
cytokine  storm  [65].  Fabbri  et  al.  have  discovered  that
miR-93-5p inhibits the IL-8 gene. They discovered that a) the
miR-93-5p level  is  increased in the cells  and b) IL-8 mRNA
content and IL-8 output were significantly reduced when pre-
miRNA  sequences  were  transfected  into  different  cell  lines
[66]. According to Oglesby et al., interleukin-8 production is
reduced  when  miR-17  is  overexpressed  in  airway  epithelial
cells [67]. According to Hong et al. research, polyethylenimine
(PEI) was used to transport plasmid DNA encoding miR-200c
into target cells, resulting in increased production of miR-200c
and efficient suppression of IL-6, IL-8, and CCL-5. Hong et al.
also discovered that miR-200c targets the 3'UTR of IL-6, IL-8,
and CCL-5 [68].

5. MIRNA AND LNCRNA INTERACTION

MiRNAs can regulate  lncRNAs expression.  By incorrect
base-pairing, RNA-induced silencing complexes (RISCs) may
be  used  to  attack  lncRNAs,  diminishing  their  morphological
and chemical stability [69]. On the other hand, through specific
pathways,  miRNAs  enhance  their  expression  and  mature
cytoplasmic  miRNAs  reach  the  nucleus  and  influence  the
transcription of mRNA and ncRNAs [70]. For instance, mature
miR-140 in stem cells generated from adipose tissue enhance
NEAT1  expression  and  its  stability  through  binding  to
particular  sites  on  the  NEAT1  locus  [71].

Furthermore,  viral  miRNA  can  alter  the  host  cell
microenvironment  by  post-transcriptionally  regulating  many
host protein-coding transcripts and lncRNAs [38]. In terms of
viral infection, the lncRNA H19 can bind to the let-7 miRNA
family, lowering the cell's supply of let-7 and rendering it more
susceptible to infection [6]. Many forms of cancer cells have
high levels of H19, making them vulnerable to viral infection
[7].  The  host  cell  transcriptome  is  activated  during  viral
infection  due  to  the  infected  cell's  natural  immunological
response  [72].

In turn, lncRNAs can function as miRNA sponges and may
be  utilized  as  endogenous  RNA  that  competes  with  miRNA
function  [56].  They  may  bind  to  target  miRNAs  in  ceRNA
networks  through  miRNA  reaction  components  (MREs),
preventing miRNA-mediated degradation of targeted mRNAs
[73].  They also  produce miRNAs by splicing RNA for  post-

transcriptional control of mRNAs as miRNA precursors [74].
Consequently,  by  vying  with  miRNAs  for  particular  targets,
identification, and attachment to the 3'UTR of target mRNAs,
lncRNAs may impede miRNA-mediated negative regulation of
target  mRNAs.  However,  the  function  of  lncRNAs  and
miRNAs produced by viruses and host cells in viral infection
and  their  competitive  binding  to  mRNAs  remains  largely
unknown,  necessitating  additional  research  [20].

6. CIRCRNA AND LNCRNA IN COVID-19

It  has  been  found  that  immunological  responses  of
circRNAs  and  lncRNAs  may  influence  immunological
tolerance  and  immune  escape  [75,  76].  In  a  study,  authors
found  898  differently  expressed  lncRNA  in  COVID-19-
positive patients, of which 414 were up-regulated and 484 were
down-regulated. Furthermore, among 570 circRNAs that had
different expressions compared to healthy patients,  155 were
up-regulated  and  415  were  down-regulated.  Using
circRNA/lncRNA  as  ceRNA  may  protect  mRNA  against
microRNA depreciation [77]. LncRNAs affect cis-regulation in
signal  transduction  such  as  Wnt/βcatenin,  Ras,  mTOR,  and
interleukin-1  mediated  signaling  pathways,  which  can  affect
transport,  cell  migration,  phosphorylation  of  proteins,  and
protein  transcription  via  repressing  transcription  factors.
Furthermore,  lncRNA expression  in  trans-regulation  impacts
drug metabolism. It also helps the host's natural immunity by
affecting the assembly of the NLRP3 inflammasome complex
[77].

7. LNCRNA AND EXOSOMES RELATIONSHIP

Studies also suggest that exosomes have a crucial function
in viral infection [78]. Exosomes are small membrane vesicles
that vary between 30 and 150 nm, carrying RNA and protein
complexes in eukaryotic cells into the extracellular matrix [77].
Immune  response,  antigen  presentation,  cell  proliferation,
diversification, cancer development, and other processes may
all  be  impacted  by  them,  depending  on  the  cell  type  from
which they emerge. Exosomes can carry viral nucleic acid and
proteins  and  can  change  the  microenvironment,  enabling
diseases to propagate quickly [77]. Coronavirus-infected cells
generate  exosomes  and  may  also  export  the  SARS-CoV-2
invasion  receptor  (ACE2),  rendering  uninfected  cells
susceptible  to  virus  loading  [79].  CircRNA  and  lncRNA
variants linked to exosomes were discovered in SARS-CoV-2
infected cells. Therefore, it has been proposed that exosomes
might  be  used  in  COVID-19  treatment.  A  few  studies  have
found that the composition of exosomes differs before and after
infection,  indicating  that  exosomes  may  be  involved  in
developing  new  diseases.  These  exosomes  contain  114
differently expressed circRNAs and 10 differentially expressed
lncRNAs [80, 81].

8. LNCRNAS INTERACTION WITH IMMUNE SYSTEM
COMPONENTS IN SARS-COV-2 INFECTION

The current SARS-CoV-2 pandemic's high morbidity and
death  required  the  development  of  efficient  therapeutic
techniques to fight the pathogenesis of SARS-CoV-2 [82, 83].
According  to  studies  on  SARS-CoV-infected  humans  and
animals, the virus's fatal pneumonia may be linked to immune-
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pathological  processes  [84  -  86].  The  significant  COVID-19
pathology  and  rising  clinical  symptoms  may  be  due  to
inflammation  and  cytokine  storm  [82,  83].

Multiple studies have shown that cytokines such as IL-1,
IL-6,  IL-12,  IL-18,  TNF,  IFN,  and  other  inflammatory
mediators,  are  released  uncontrollably  in  “Cytokine  Release
Syndrome” or CRS, which is believed to be linked to severe
COVID-19  [87].  It  is  noteworthy  that  the  function  of  these
components  of  the  immune  system  is  through  non-coding
RNAs such as lncRNAs [32]. The INK4 gene's antisense non-
coding  RNA  (ANRIL),  which  forms  an  endogenous
competitive RNA, has been linked to inflammatory responses
[88, 89].

8.1. IL-6 secretion-related lncRNAs

IL-6,  a  multifunctional  cytokine  that  promotes  acute
inflammatory responses, influences many cancer types as well
as  viral  infections [90,  91].  lncRNAs regulate IL-6 synthesis
through  several  mechanisms  involving  JAK/STAT,  NF-κB,
HIF-1,  and  MAPK  (Fig.  2)  [92  -  95].  As  an  example,
MALAT1 (metastasis-associated lung adenocarcinoma miRNA
1), also known as NEAT2, has been discovered to have a dual
function in various signaling pathways, especially IL6 [96].

The  Janus  kinase/signal  transducers  and  activators  of
transcription  (JAK-STATA)  are  downstream  signaling
pathways that are triggered by IL-6 (STAT1,3, and 5), which

affect immunological processes [97, 98]. Nuclear factor kappa-
B (NF-κB) is important for IL-6 secretion and modulation of
NF-κB,  a  major  transcription  factor  of  IL-6  that  has  been
shown  in  preclinical  trials  to  suppress  SARS-CoV  [99].
LncRNAs  may  influence  IL-6  expression  in  a  myriad  of
contexts,  one  of  which  is  NF-κB  [92  -  94].  Another  long
intergenic  non-coding  RNA  (lincRNA)  linked  with
inflammatory events through the NF-κB pathway is Gm4419
[100].

8.2. NLRP3 inflammasome Development by lncRNAs

The  growing  body  of  evidence  indicates  that
inflammasome  formation  is  aided  by  lncRNAs,  which  are
linked  to  promoting  severe  diseases  [101,  102].  The  NLRP3
inflammasome is activated against infectious pathogens such as
SARS-CoV-2,  producing  IL-1  and  IL-18  [32,  62,  103].  Two
different  signaling  pathways  activate  the  NLRP3
inflammasome.  First,  pro-IL-1  and  NLRP3  are  enhanced  by
microbial  compounds  that  recognize  TLRs  or  cytokines  and
stimulate  NF-κB.  Pathogen-associated  molecular  patterns
(PAMPs) and danger-associated molecular patterns (DAMPs)
activate the secondary pathway, resulting in the construction of
ASC and pro-caspase-1 and, as a result, the stimulation of the
NLRP3  inflammasome  [104,  105].  Therefore,  it's  becoming
apparent  that  anti-NLRP3  inflammasome  medications  may
benefit  patients  with  inflammatory  illnesses  by  reducing
inflammatory  responses  [106  -  108].

Fig. (2). This schematic illustration shows that lncRNAs such as MALAT1 and NEAT1 are involved in inflammatory responses that increase the
production of IL6 and lead to cytokine storms.
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NEAT1 (nuclear enriched abundant transcript 1) has been
associated  with  several  different  malignancies,  including
cancers  such  as  prostate,  cervical,  and  breast  cancer  [109].
Furthermore,  LPS-stimulated  immortalized  bone  marrow-
derived  macrophages  (iBMDMs)  enhanced  NEAT1
translocation  in  the  nucleus  and  cytoplasm,  resulting  in
inflammasome  assembly,  caspase  one  activation,  and
inflammatory  cytokine  response,  highlighting  NEAT1's
inflammatory  role  [45].

9.  INFLAMMATION AND CYTOKINE STORMS: THE
ROLE OF MICRORNAS

Ariana Centa et al. believe that microRNAs are involved in
endothelial  function  in  individuals  suffering  from  serious
respiratory  problems  and  thrombotic  complications  in  post-
mortem lung tissues. The findings of a study indicate that miR
(-26a-5p,-29b-3p,  and-34a-5p)  recognize  mRNA  targets
implicated in endothelial and inflammatory signaling pathways
as  regulators,  as  well  as  viral  diseases.  Based  on  miRNA
targets,  protein-protein  interactions,  and  inflammatory
indicators  found in  the  patients,  the  miRNA/mRNA network
showed  a  strong  relationship  between  these  miRNAs  and
endothelial  activation/dysfunction.  MiR-26a-5p  [IL-6  and
ICAM-1] and miR-29b-3p [IL-4 and IL-8] have a significant
relationship  with  inflammatory  biomarkers  in  COVID-19
patients.  The  results  showed  miR  (-26a-5p,  -29b-3p,  and
-34a-5p) endothelial dysfunction and inflammatory response in
people infected with SARS-CoV-2, as well as the development
of severe lung damage and immunothrombosis [110].

The  rapid  and  widespread  edema  and  fibrosis  that  occur
during the remodeling process and eventual airway clogs are
undoubtedly caused by uncontrollable and abrupt increases in
TGF-β [111]. MiR-27a-3p regulates TGF function, inhibits the
TGF-β  /Smad  pathway,  and  suppresses  myofibroblast
development  by  regulating  Smad2  and  Smad4  activity  [58].

Jacopo  Sabbatinelli  et  al.  predicted  that  COVID-19
severity  is  related  to  inflammation.  They  analyzed  samples
from  COVID-19  individuals  with  multifocal  interstitial
pneumonia  to  examine  their  reaction  to  a  single  intravenous
infusion  of  tocilizumab,  an  anti-IL-6  receptor  drug  (TCZ).
They evaluated a set of microRNAs that control inflammation,
miR-146a-5p, miR-21-5p, and miR-126-3p, with RT-PCR and
Droplet  Digital  PCR  techniques.  As  a  result,  COVID-19
patients  who  did  not  respond  to  TCZ  exhibited  lower  blood
levels  of  miR-146a-5p  and  they  had  the  poorest  outcomes.
These  findings  suggest  that  a  blood-based  biomarker  like
miR-146a-5p  may  provide  insight  into  the  molecular  link
between inflammation and the clinical  course of  COVID-19,
allowing  us  to  understand  better  how  to  use  biological  drug
armament to fight this global health issue [112].

In  nanoparticle  technology,  using  cerium  oxide
nanoparticles  (CNP)  allows  unstable  medicines,  such  as  the
anti-inflammatory microRNA-146a, to be administered locally
to the damaged lung without causing systemic absorption. In a
study,  the  intrathecal  injection  of  CNP-miR146a  showed  an
improvement  in  lung  biomechanics  by  decreasing
inflammation  and  oxidative  stress  via  modulating  leukocyte
recruitment and reducing collagen deposition [113].

According to recent research, the IL-6/IL-6R pathway is a
significant  contributor  to  symptom-related  cytokine  storms.
Downregulation  of  miR-451a  may  increase  IL-6R  protein
production.  In  COVID-19  patients,  three  up-regulated  long
non-coding  RNAs  (lncRNAs)  with  miR-451a  binding  sites
may  act  as  miRNA  sponges,  competing  with  IL-6R  for
miR-451a. These results help researchers identify therapeutic
targets for this novel illness [114].

Dharmendra  Kumar  Soni  et  al.  investigated  the
pathogenicity  of  SARS-CoV-2  infection  by  examining  the
function of the most potent antiviral reactions in the host and
immunological  and  inflammatory  responses.  The  efficacy  of
anti-miR-155  treatment  was  tested  in  a  COVID-19  animal
model  (mice  transgenic  for  human  angiotensin  I-converting
enzyme two receptors). Their findings show that male models
had higher levels of viral loads and miR-155 than female ones.
Furthermore,  they  found  that  treating  SARS-CoV-2-infected
mice  with  anti-miR-155  lowers  miR-155  expression  and
improves survival and clinical outcomes. Anti-miR-155-treated
mice hACE2 infected with SARS-CoV-2 exhibited improved
antiviral and anti-inflammatory cytokine responses and reduced
levels of pro-inflammatory cytokines [115].

In the latest  research,  differentially expressed circulating
miRNAs  have  been  recognized  as  viable  biomarkers  for
understanding  the  severity  of  the  disease  in  the  Brazilian
population using high-throughput sequencing to detect miRNA
expression  levels.  A  total  of  18  human  miRNAs  were
expressed differently in COVID-19 patients, with 13 miRNAs
being substantially elevated and 5 miRNAs being considerably
downregulated. Moreover, miR (-4433b-5p, -6780b-3p, -6883-
3p, -320b, -7111-3p, -4755-3p,-320c, and miR-6511a-3p) were
shown  to  be  significantly  involved  in  the  PI3K/AKT,  Wnt/-
catenin,  and  STAT3  signaling  pathways,  all  of  which  are
essential  in  viral  infections.  MiR-451a,  -101-3p,  -185-5p,
-30d-5p,  -25-3p,  -342-3p,  -30e-5p,  -150-5p,  15b-5p,  and
29c-3p were the most significant miRNAs found to be engaged
in the Wnt/-catenin, NF- κB, and STAT3 signaling pathways,
which  play  critical  roles  in  immune  response  and
inflammation. However, further studies are required to confirm
these miRNAs as COVID-19 biomarkers [116].

9.1.  MicroRNAs  as  Biomarkers  for  the  Acute  and  Post-
acute Phases of COVID-19

The outcomes of a real-time PCR assay were used to assess
the  expression  level  of  selected  miRNAs  such  as  let-7b-3p,
miR-29a-3p,  -146a-3p,  and  155-5p  in  peripheral  blood
mononuclear  cells  (PBMCs)  of  COVID-19  patients,  in  both
acute  and  post-acute  phases,  and  healthy  controls.  In
COVID-19 patients, receiver operating characteristic analysis
[86]  was  used  to  assess  the  specificity  and  sensitivity  of
miRNAs.  All  miRNAs  were  expressed  at  greater  levels  in
COVID-19  patients.  As  a  result,  the  expression  patterns  of
miR-29a-3p,  miR-146a-3p,  and  let-7b-3p  were  substantially
different in the post-acute COVID-19 phase compared to the
acute COVID-19 phase. ROC analysis recognized MiR-29a-3p,
-155-5p,  and  -146a-3p  as  new  biomarkers  for  COVID-19
diagnosis  with  excellent  specificity  and  sensitivity.
Furthermore, miR-29a-3p and -146a-3p may be used as novel
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biomarkers  to  differentiate  between  the  acute  and  post-acute
phases of COVID-19 [117].

9.2. MicroRNAs can Regulate the Expression of ACE2 and
TMPRSS2 Receptor Genes

Zhi  Liu  et  al.  investigate  the  role  of  miRNAs  in  virus-
induced  dysregulation.  According  to  their  results,  infection-
modulated  miRNAs  regulate  two  of  the  most  important
biological  processes:  the  immune  response  and  cytoskeleton
structure [118]. The control of cellular components, molecular
activities, and biological processes was used to group all of the
differentially expressed miRNA target genes, as determined via
cluster analysis. According to enrichment analyses, peptidase,
protein kinases, and the ubiquitin system exhibited the highest
enrichment values [119]. SARS-CoV-2 enters cells by latching
on to the receptor ACE2 with the spike (S) protein via the host
serine  protease  TMPRSS2,  which  allows  viral  and  cellular
membranes to merge (Fig. 3) [55].

Given  the  significance  of  cellular  receptors,  particularly
ACE2, in SARS-CoV-2 infection, Sardar et al. discovered that
miRNA 27b controls the ACE2 receptor [120]. According to
the  findings  of  Chauhan  et  al.,  miRNA  200b-3p,  miRNA
200c-3p,  and  miRNA  429  can  inhibit  ACE2,  whereas
let-7c-5p, miRNA 98-5p, let-7 f-5p, let-7 a-5p, let-7 g-5p, let-7
g-5p, let-7b-5p, miRNA 4458, let-7e-5p, let-7i-5p, let-7d-5p,
and miRNA 4 can increase the expression of ACE2. Increased
expression of the ACE2 receptor is observed in patients with

metabolic  syndrome,  diabetes,  and  heart  disease.  Therefore,
inhibiting  the  ACE2  receptor  with  miRNAs  may  be  an
effective  treatment  option  for  COVID-19  infection  [121].

In addition to miRNAs that directly interact with the viral
genome,  host  miRNAs  that  target  ACE2  may  play  a  role  in
regulating SARS-CoV-2 infection. In addition, a large number
of  miRNAs  targeting  the  3′-UTR  of  ACE2  in  humans  were
discovered.  All  three  online  miRNA  prediction  algorithms
found six miRNAs (miR-362-5p, miR-421, 500a-5p, 500b-5p,
miR-3909, and 4766-5p). MiR-421 has already been identified
as a possible ACE2 regulator, which is interesting [122].

There  has  been  evidence  of  miRNA  dysregulation  in
patients with SARS-CoV-2, which may cause changes in the
genes  controlled  by  miRNAs  [41].  High-throughput
sequencing was used to assess the expression levels of different
miRNAs,  and  correlation  analysis  was  used  to  discover  the
miRNA-primed target genes. Compared to healthy controls, 35
miRNAs  were  up-regulated  and  38  miRNAs  were
downregulated in COVID-19 patients. The production of miR
(6501-5p and 618) was 1.5-fold higher in COVID-19 patients
as compared with healthy control donors. A 2.3-fold reduction
in miR-627-5p, on the other hand, was seen in comparison to
the controls. There was a 1.3-fold reduction in the expression
of  other  miRNAs  (miR-183-5p,  627-5p,  and  1443-3p)
compared  to  healthy  donors.  They  found  that  hsa-
miR-4661-3p, a virus-encoded miRNA, SARS-S CoV-2's gene
was anticipated to be the target [118].

Fig. (3). Potential treatment targets for SARS-CoV-2 infection inhibition include microRNAs, which prevent viral entry and replication.
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According to a study, SARS-CoV-2 needed miR-200c to
connect ACE2 receptors in cardiomyocytes [123]. To identify
common  regions  and  coronavirus  2  genes  linked  to  SARS
(Severe Acute Respiratory Syndrome), Abolfazl Bahrami and
Maryam Bakherad retrieved the entire genomes of all viruses
identified in databases for this family (55 genomes in all) and
conducted  comparative  genomic  research  on  them.  RELA in
the viral genome and ACE2 receptors and CLEC4M genes in
the host genome were the most significant genes implicated in
the  illness.  RELA  gene  was  reduced  by  hsa-miR  (516b-3p,
3529-3p, and 6749-3p), ACE2 receptor was inhibited by hsa-
miR (23b-5p and 769-5p), and CLEC4M gene was repressed
by  hsa-miR  (4462  and  5187-5p).  As  a  consequence,  their
findings  will  aid  in  the  management  and  treatment  of
COVID-19, as well as provide fresh insight into vaccine design
and miRNA therapy [124].

The  NF-κB  pathway  activation  raises  the  expression  of
miR-200c-3p, which is a key factor in ARDS. The increased
miR-200c-3p  expression  has  been  linked  to  a  reduction  in
ACE2  expression.  In  certain  COVID-19  instances,  reduced
ACE2 expression in the lungs and upper respiratory tract may
be  related  to  decreased  disease  severity.  As  a  result,  it  is
postulated  that  bacterial  LPS  and  LTA  may  lower  ACE2
expression  in  COVID-19  patients'  lungs  via  up-regulating
miR-200c-3p  [125,  126].

Transmembrane  serine  protease  2  (TMPRSS2)  has  an
important role in mediating viruses, and SARS-CoV-2 employs
TMPRSS2  for  viral  entry  [127].  SARS-CoV-2  can  encode
miRNAs  that  promote  TMPRSS2  overexpression,  and
Mir-147-3p can increase SARS-CoV-2 infection in the gut by
boosting the synthesis of TMPRSS2 [118]. However, miRNAs
may be used as molecular tools to prevent SARS-CoV-2 viral
transmission  and  replication  in  humans  since  they  have  a
strong  affinity  for  TMPRSS2  and  may  block  this  receptor
[128].  TMPRSS2  diminution  mediated  by  miRNA  for  early
COVID-19 prevention has been established in the laboratory
for  early  COVID-19  prophylaxis.  TMPRSS2  binding  was
examined  in  a  pool  of  163  miRNAs  using  three  miRNA
prediction  methods,  yielding  11  common  miRNAs.
Furthermore, negative computational energies for association
confirmed miRNA-Tmprss2 interactions, while the S fold tool
identified three miRNAs (hsa-miR-214, hsa-miR-98, and hsa-
miR-32) based on likelihood scores of 0.8 and accessibility to
the  Tmprss2  target.  Transfection  of  miRNA(s)  into  Caco-2
cells,  quantitative  differential  expression  analysis,  and
confirmation  of  Tmprss2  silencing  with  maximal  gene
suppression  by  hsa-miR-32,  is  a  new  potential  function  in
CoV-2  pathogenesis  [128].

CONCLUSION

Many of the strategic uses of non-coding RNAs to promote
SARS-CoV-2  may  be  unrecognized.  As  a  result  of  viral
infections,  the regulation of lncRNAs occurs irregularly,  and
many host  functions are improperly regulated,  leading to the
development of viral infection. Human non-coding RNAs are
influenced  by  viral  infection  as  viral  proteins  interact
intimately with their host proteome. On the other hand, A low-
scale  approach  to  studying  non-coding  RNAs  in  response  to

SARS-CoV-2 infection could be inappropriate  in  the  present
circumstances.  We  introduced  many  lncRNAs  with  altered
expression  levels  during  viral  infection,  which  may  serve  as
biomarkers.  However,  their  specific  role  in  response  to  the
virus is yet to understand.

Furthermore,  microRNAs  play  significant  roles  in
COVID-19,  and  the  presented  strategies  might  lead  to  the
creation of procedures for reducing the expression of critical
COVID-19 “cytokine storm” components. The characteristics
of lncRNA and miRNA can be employed in the treatment and
diagnosis  of  patients  with  the  SARS-CoV-2 virus.  However,
additional studies are required.
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