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Abstract:

Over the past 33 months, 10 SARS-CoV-2 mutant variants have evolved. Among them, very few were infectious, while the rest were not that
rampantly  infectious.  As  COVID-19  has  been  the  century’s  most  destructive  pandemic,  and  as  the  variants  of  concern  and  significance  are
heralding nature, there is an inherent need to bring collaborative convergence among scientists to combat future pandemics such as COVID-19. A
question remains whether these emerging variants could allow us to define the advent of pathogenesis and whether or not we are prepared. In this
review, we give a gist of variants that could be associated with the recombination events concerned with SAR-CoV-2 that have an impact on the
immune response in the human body.
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1. INTRODUCTION

SARS-CoV-2  has  been  one  of  the  most  discussed  and
extensively researched topics over the past few years. It has a
genome size of about 29.9 kb and is a single-stranded positive-
sense  RNA  virus.  The  origins  of  the  unique  pandemic
coronavirus had their inception in December 2019 in Wuhan
even as It exhibits the phenomenon of genetic drift [1, 2]. Due
to the lack of a definite origin, the evolution of the origin of
SARS-CoV-2 is still unclear. Whether the origin of the virus is
due to the phenomenon of natural selection in an animal host
before zoonotic transfer  or  the same phenomenon in humans
after  zoonotic  transfer  remains  elusive [3  -  5].  SARS-CoV-2
causes  severe  respiratory  illnesses  such  as  lung  failure  and
pneumonia and over the last 33 months, t even as the flagship
genes have begun to be studied even as it has been unfolding
the saga of COVID-19 infection [6, 7].

Viruses cause significant morbidity as well as mortality in
humans  because  they  are  generally  deadly,  proliferate,  and
possess  a  mechanism  of  their  own.  Effective  drugs  that  can
control  their  proliferation  are  currently  unavailable  on  the
market.  Three  of  the  seven  known  human  coronaviruses,
namely SARS-CoV, MERS-CoV, and SARS-CoV-2 that have
developed and evolved into their respective  severe  pathogenic
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forms are infecting and colonizing the human respiratory tract.
Droplets,  aerosols,  and  contaminated  fomites  are  the
predominant  contact  routes  potentially  responsible  for  viral
spread  [8].  Some  patients  were  identified  with  mutations
representing multiple viral strains, which may have formed as a
result of homologous recombination due to co-infection. Major
viral  strains  with  nucleotide  substitutions  may exist  between
Wuhan-1  and  RaTG13  coronavirus  as  the  genome  tends  to
switch  between  these  two  viruses  and  thus  shows  high
instability or mutation tolerance [9]. On the other hand, SARS-
CoV-2 and its ancestors, SARS-CoV and bat-SARS-like-CoV,
possess a shared origin. A thorough analysis of Codon Usage
Bias (CUB) in SARS-CoV-2 revealed significant CUB, natural
selection, and mutation pressure dominating in the S-genes of
distinct beta-coronaviruses [10].

Betacoronaviridae's infectivity and virulence fluctuate over
time  due  to  their  extremely  high  mutation  rate,  frequent
recombination,  and  interspecies  transmission.  SARS-CoV-2
genotypes  revealed  mutations  in  structural,  non-structural,
accessory proteins and untranslated regions. However, the most
common  type  of  mutations  among  the  many  available  are
substitutions  of  single  nucleotides,  including  insertion  or
addition,  removal  or  deletion,  as  well  as  frameshifts,  at  a
slower  rate.  Out  of  all  the  structural  proteins,  the  spike
glycoprotein as well as the nucleocapsid phosphoprotein, show
the  most  changes  whereas  proteins  in  the  envelope  and  the
proteins  in  the  membrane  turn  out  mostly  to  be  conserved.
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Variations in D614G, as well as P323L, proteins like the spike,
and  also  the  enzyme  RNA-dependent  RNA  polymerase,
became  dominant  globally  [11],  suggesting  a  foundation  to
understand  the  recombination  apart  from  the  noise  and
convergent evolution with recombinations happening before its
transfer to humans [12].

Humans  were  first  infected  with  SARS-CoV  in  2002.
Many believe that the Carnivora-borne viruses are most likely
to be the source of SARS-CoV. While the development of the
MERS-CoV in 2012 was likewise aided by Chiroptera-hosted
lineages,  the  causal  microorganism  of  COVID-19,  SARS-
CoV-2 has  been  added to  zoonotic  transmission  events  from
2019.  Coronavirus  was  studied  as  outgroups  across  eleven
different  species,  SARS-CoV,  SARS-CoV-2,  and  MERS-
associated viruses  are  all  connected to  the  Chiroptera-hosted
viruses [13]. All current Coronaviridae members are the result
of  a  series  of  gradual  adaptive  modifications  that  occurred
through  multiple  previous  recombination  events,  resulting  in
each having an RNA sequence with a unique mosaic pattern.
The  core  sequence  corresponding  to  the  novel  coronavirus,
known as SARS-CoV-2, was acquired from a parent common
to a  bat  coronavirus,  portrayed by the strain RaTG13,  which
was discovered in 2012 in the Yunnan province of China [2].
The  genetic  similarity  of  Beta  coronavirus  found  in
Rhinolophus bats in China to the variant of SARS-CoV-2 was
profusely  elevated,  but  they  are  not  likely  to  be  the  direct
progenitor  [14].  Whereas Alpha CoV was identified as a  co-
infection in one of the bat samples, close observation is needed
in  bats  to  evaluate  the  degree  of  risk  of  newly  arising  CoVs
[15]. There were two major variants, one of which was present
in  the  initial  epidemic  in  Wuhan  and  the  latter,  the  S-type
which  is  older  and  emerged  previously  than  L-type  and  less
pervasive at early stages [16].

1.1. Sequence and Evolutionary Lineages of SARS-CoV-2
in the Realm of Immunobiology and Drug Efficacy

Over the last few months, drug and vaccine development
saw  failures  as  new  strains  with  altered  virulence  and  the
ability  to  escape  antiviral  defense  or  repurposed  drugs.  The
new strains that emerged due to rapid recombination are likely
to target the immune system [17]. Antigen receptors playing an
important  role  in  the  innate  immune system,  such as  nucleic
acids, carbohydrates, lipids, small molecules, and proteins that
are  specific,  have  intrinsic  specificity,  which  has  been
described  by  antigen  receptors  present  as  part  of  the  innate
immune system. These two immune system components either
react  quickly  (innate)  with  specific  antigens  of  microbes  or
evolve  through  time  (adaptive)  in  order  to  reach  greater
specificity as well as high affinity. Other important receptors of
the immune system, like the cytokine receptors, which help in
regulating immunity as well as inflammation, are also present.
Antigen receptors utilize a minimal number of protein folds to
fulfill their several varieties of immunological tasks with other
essential  participants,  the  antigens  themselves.  Surface
glycoproteins which are present in enveloped viruses, such as
SARS-CoV-2,  allow  access  into  host  cells  and  also  are  the
targets  for  antibody  responses  [18].  Divergent  genetic
polymorphisms created a  significant  challenge in  developing
medicines and vaccines [10].

In  the  SARS-CoV-2  pandemic,  a  very  important  role  is
executed  by  the  adaptive  immune  system  and  influences  a
patient’s  clinical  outcomes.  A  delayed  and  weak  adaptive
immune  response  was  seen  in  patients  who  had  critical
COVID-19  symptoms.  It  has  been  reported  that  the  repair
mechanism  for  DNA  damage,  needed  for  the  mechanism  of
V(D)J recombination in adaptive immunity, was inhibited by
the spike protein of SARS-CoV-2 by using an in vitro cell line
[19]. It has also been found that the nucleus is where the spike
protein localizes and impedes BRCA1 and 53BP1 DNA repair
protein recruitment to the particular damage site. The studies
revealed  a  possible  molecular  mechanism  for  more
understanding this mechanism [19]. The SARS-CoV-2 genome
acts as a messenger RNA and translates open reading frames
(ORFs), viz. polyproteins of ORF1a and ORF1b regions, that
get  cleaved  into  a  number  of  16  non-structural  proteins
(nsp1–16) by proteases present in the virus, and initiates viral
replication and transcription after the virus enters the host cell
expressing both ACE2 and TMPRSS2 receptors. Many ORFs
could  be  better  annotated  and  predicted  if  the  subgenomic
sequences were translated into hypothetical proteins [20].

In Yunnan province,  a novel  SARS-CoV-2-related virus,
provisionally  known  as  PrC31,  was  found  by  examining  the
next-generation sequencing (NGS) data  of  intestinal  samples
collected  in  2018.  The  nucleotide  identities  of  the  SARS-
CoV-2 and SARS-CoV-2 ZC45 genomes were 90.7 and 92.0
percent, respectively. The genomic regions of PrC31 with the
highest levels of similarity to the equivalent genomic regions
of  SARS-CoV-2  were  orf1a  and  orf8,  in  particular.
Recombination  investigations  reveal  that  PrC31  originated
from  yet-to-be-identified  intermediate  recombination  strains
and  underwent  numerous  complex  recombination  events
involving the SARS-CoV and SARS-CoV-2 sub-lineages [21].
SARS-CoV-2 is mostly found to be chimeric, as revealed by
genomic analyses. They are similar to the RaTG13 sequence of
CoV, but again, its RBD is similar to pangolin CoV. Viruses
that are chimeric can occur through either human interference
or  natural  recombination  [22].  Civets  and  camels  are
intermediate  hosts,  allowing  such  viruses  to  recombine  and
appear  as  fresh  pathogenic  and  aggressive  strains  [23].  The
authors  have  also  identified  the  SARS-CoV-2-related
coronaviruses in Malayan pangolins. Viruses linked to SARS-
CoV-2  that  are  connected  with  pangolins  have  been
discovered, implying that pangolins could also be the possible
hosts  of  new  coronaviruses  [24].  The  virus  isolated  from
Malayan  pangolin,  referred  to  as  pangolin-CoV,  has  a  high
amino acid identity with that of SARS-CoV-2. The pangolin-
CoV’s receptor-binding domain of the S protein is similar to
SARS-CoV-2.  17  out  of  the  25  Malayan  pangolins  had
pangolin-CoV.  Pangolins  that  were  infected  had  clinical
symptoms,  and  antibodies  against  the  pangolin-CoV  reacted
with  SARS-CoV-2’s  S  protein.  As  noticed,  pangolins  could
also be the intermediate hosts of SARS-CoV-2, and a series of
recombination studies have been acknowledged [25 - 32].

In  the  genomes  of  numerous  SARS-CoV-2  strains,
deletions have been discovered that cannot be resolved using
existing phylogenetic approaches. As a result, employing strict
phylogenetic remodeling, the k-mer natural vector is supposed
to  investigate  hosts  and  transmission  features  for  SARS-
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CoV-2.  The  fact  that  SARS-CoV-2  clusters  with  bat-origin
coronaviruses,  strongly  supports  the  fact  that  bats  are  the
virus's  natural  reservoir.  After  creating  a  bat-to-human
transmission  route,  the  civet  is  projected  as  a  potential
alternative,  and  the  pangolin  is  acknowledged  as  an
intermediary host [33]. It is important to comprehend the origin
of SARS-CoV-2 in order to prevent future zoonoses [34]. The
SARS-CoV-2  pandemic  and  numerous  other  zoonotic
epidemics in humans highlight the significance of researching
the evolution of the entire CoV subfamily to comprehend how
new  strains  arise  and  what  molecular  processes  affect  their
adaptation,  transmissibility,  host/tissue  tropism,  and
pathological  non-homologous  genetic  structural  restrictions
that  prevent  the  SARS-CoV-2  spike  from  evolving  further.
Point  mutations,  insertions/deletions,  and intra-SARS-CoV-2
recombination events lead to the emergence of novel  SARS-
CoV-2  strains  [35].  HIV-1  and  SARS-CoV-2  have  the  same
evolutionary  strategies.  The  variability  generated  by
recombination and mutations enables extraordinary diversity in
HIV-1  and  a  slower  rate  of  mutation  in  SARS-CoV-2.
Important phenotypic consequences have been shown by recent
variants of SARS-CoV-2, exhibiting spike mutations that have
improved infectivity and antibody resistance. The authors have
compared mutational patterns in HIV-1 and understanding the
diversity  of  SARS-CoV-2  that  leads  to  their  evolution  by
natural selection [36], besides understanding the structures [37]
and their  variations over  time [38] has been helpful  in  many
ways  for  the  analysis  of  antiviral  drugs  [39].  Novel  variant
surveillance [40] and a substantial impediment to the creation
of CoV-specific vaccines and medicines [41 - 43]. A new strain
may  evolve  due  to  rapid  recombination  and  the  ability  of
independent species to cross. In order to battle SARS-CoV-2, it
is  vital  to  educate  the  public  about  personal  hygiene,  social
isolation,  and  the  use  of  available  treatments.  In  order  to
prevent  viral  spillover  outbreaks,  it  is  necessary  to  identify
potential sources, intermediate hosts, and the virus's ability to
cross species barriers [44].

1.2. Spike as a Key, Important Structural Gene: Are there
any known Recombination events Occurring in COVs?

Coronaviruses  have  a  special  ability  for  genetic
recombination  and  greater  mutation  rates,  which  result  in
adaptations that make them better suited to overcome species
barriers  and  infect  other  species.  High  homologous  RNA
recombination  rates,  low  fidelity  of  the  viruses'  RNA-
dependent RNA polymerase, and adaptation of the S protein to
bind host receptors, such as angiotensin-converting enzyme 2
(ACE2)  in  the  case  of  SARS-CoV  and  SARS-CoV-2,  and
dipeptidyl peptidase 4 (DDP4) in the case of MERS-CoV, are
all factors that contribute to the viruses' high diversity [45].

The  spike  gene  has  several  variants,  some  of  which  are
shared across or between strains. The alpha strain is vulnerable
to  immunological  responses  caused  by  previous  strains,  the
beta,  gamma,  and  delta  strains,  which  are  immune-resistant.
Aside from random replication errors, intra-host RNA editing,
chronic infections, and recombination are all  factors that can
cause sequence alterations to accumulate in the SARS-CoV-2
genome.  Recombination  has  a  lead  role  in  coronavirus
evolution,  and  recent  results  on  SARS-CoV-2  imply  that  it

might  be  especially  important  [46].  The  latest  SARS-CoV-2
variation  of  concern,  Omicron,  has  drawn  attention  to  step
change  antigenic  occurrences,  or  “shifts,”  rather  than
incremental “drift” changes in antigenicity [40]. Several spike
protein and RBD mutations arose in many variations, with over
30  alterations  in  the  new  Omicron  (B.1.1.529)  clade,  15  of
which  were  focused  on  the  RBD  [47].  The  molecular  and
evolutionary  mechanisms  that  control  the  cell  tropism  and
interspecies  transmission  of  coronaviruses  have  started  to
reveal after SARS-CoV, MERS-CoV, SADS-CoV and SARS-
CoV-2.  Carbohydrates  and  protein  receptors,  to  which  the
spike  protein  binds,  induce  membrane  fusion,  and  these
interactions are so complex that even after many improvements
in  the  field,  there  are  many  unanswered  concerns  regarding
tropism  modification  and  cross-species  transmission.  The
evolution of spike has largely been concentrated because it is
highly susceptible to mutations and recombinations. Millet JK
et  al  .  (2021)  brings  light  to  the  molecular  and  evolutionary
insights  of  coronavirus  receptor  usage  and  host  range
expansion. Multiple recombination events have been harbored
by SARS-CoV-2 genomes. S proteins have the ability to infect
humans and mammalian cells as they show purifying selection
and  ancestral  recombination  events.  Future  recombination
opportunities increase as the SARS-CoV-2 population grows
and  spreads  globally  [48].  Scientists  have  found  many
independent  origins  for  recombinant  SARS-CoV-2  viruses
carrying single-nucleotide polymorphisms and B.1.1.7 variant
characteristic deletions. Genomes of recombinant strains share
genetic  variation  that  is  contiguous  with  non-B.1.1.7  viruses
present in the same place as the recombinants. Recombination
breakpoint  location  suggests  that  community-transmitted
recombinant  viruses obtained their  spike area from a B.1.1.7
parental virus [49].

Recombination  mainly  happens  in  the  Receptor  Binding
Domain  (RBD)  of  the  spike  protein  in  the  beta  coronavirus
genus.  The  statistical  analysis  supports  ancestral
recombination.  RBD  sequence,  including  two  insertions  at
positions 432-436 and 460-472, is present in both SARS-CoV
and  SARS-CoV-2,  as  well  as  in  427N  and  436Y.  These
variants  are  helix-shaped  and  interact  with  human  ACE2
(hACE2) receptors. Recombination involving ancestral strains
of SARS-CoV and SARS-CoV-2 and alleles 427N and 436Y
increased hACE2 binding affinity, attributing to variations in
the sequences [50 - 57], with the resurgence of novel SARS-
CoV-2 variants, which have been detailed elsewhere [58 - 61].

1.3. Over 10 Variants have Emerged ever Since COVID-19

Although  research  has  shown  that  recombinational
exchanges occur at random along the coronaviral genome, in
nature, they are vastly overrepresented in regions controlling
viral  interaction  with  host  cells  [62].  Mutations  and
recombinations  in  the  genetic  material  of  SARS-CoV-2  can
change the virus's life span, infectivity, tropism, and virulence.
To introduce a new vaccine to the public domain, it has to go
through several steps, from manufacturing to marketing [63].
Although  SARS-CoV-2  is  rapidly  developing,  its  genome  is
extremely  similar  to  that  of  the  original  Wuhan  strain.  The
dominant delta variant and the discovered recombinant variant
in  the  study  share  the  same  spike  protein,  proving  that
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infectivity and immune evasion are not new properties. Such
pronounced genetic changes must be thoroughly investigated,
and new variants must be characterized when lineage and clade
assignment has been confirmed [64]. The alpha and beta forms
of  severe  acute  respiratory  syndrome  coronavirus  2  (SARS-
CoV-2)  isolates  from  clinical  samples  from  Japan  exhibited
notable recombination. Such pronounced genetic changes must
be  thoroughly  investigated,  and  emergent  variants  must  be
characterized  after  meticulously  verifying  their  lineage  and
clade assignment [65]. Using amplicon-based next-generation
sequencing (NGS), a genetically distinct co-infection with two
SARS-CoV-2 viruses in a single patient sample was identified
in  Hungary  [66].  Natural  selection  based  on  enhanced
infectivity  and  resistance  results  from  viral  recombination
events within species and across hosts [67, 68]. Despite having
relatively  similar  overall  genomic  layouts,  the  2019-nCoV,
human,  and  bat,  SARS-CoV  developed  into  two  different
groups with different receptor entry specificities as a result of
possible  recombination  in  the  receptor  binding  regions.
Additionally,  2019-nCoV  has  a  four-amino-acid  insertion
between the spike protein's S1 and S2 domains that may be cut

by  furin  or  TMPRSS2  [69].  The  zoonotic  potential  of
coronaviruses  is  mainly  due  to  recombination.  In
coronaviruses,  the  transcription  happens  at  particular  sites
called  transcriptional  regulatory  sequences  (TRS).
Recombination  between  pathogens  isolated  from  different
hosts  can  be  explained  with  a  phylogenetic  tree  [70,  71].
According to our preliminary examination of the SARS-CoV-2
genomes,  recombination  has  the  same  mechanism  as
transcription,  and  recombination  is  the  primary  factor  for
transmission, pathogenicity, and host adaptation. SARS-CoV-2
has a strong recombination ability, which allows it to produce
new strains and, in turn, new variants [72]. The last 33 months
have seen over 10 variants emerge, with alpha, beta, epsilon,
gamma, delta, deltacron, omicron, XE, and XF variants rapidly
affecting humans (Fig. 1). After the virus enters the target cell,
the  membrane  fusion  domain  should  be  activated.  This  is
accomplished by the target cell protease, which cleaves the S
protein  into  S1  and  S2  subunits,  thereby  activating  it.  The
serine protease TMPRSS2 is used as a protein primer. (In its
native  state,  the  SARS-CoV  S  protein  exists  as  an  inactive
precursor) [73].

Fig. (1). An outline of emerging SARS-CoV-2 variants and the discovery date. S protein primary structures and functional domains are annotated in
primary structures (Created with Biorender.com.) The Spike (S) protein, which has a size of 180–200 kDa, is one of the targeted proteins among four
structural proteins present in beta coronaviruses, the other being the Membrane (M), Envelope (E), and Nucleocapsid (N). S protein is made up of an
N-terminus, which is extracellular, a viral membrane-anchored transmembrane (TM) domain, and a brief C-terminal section which is intracellular.
The S protein is ordinarily in a metastable perfusion configuration. However, when the virus comes into contact with the host cell,the S protein goes
through a significant structural change that enables the virus to bind to the membrane of the host cell.The spike proteins are glycoproteins and during
the viral entry, glycosylation plays a major role in immune evasion [73]. The SARS-CoV-2 S protein includes a signal peptide (amino acids 1–13)
which is present at the N-terminus, the S1 subunit (14–685 residues), which consists of N-terminal domain (14-305 residues) and the receptor binding
domain (RBD 319-541 residues), and the S2 subunit (686–1273 residues) which consists of fusion peptide (FP, 788-806 residues), heptapeptide
repeat sequence 1 (HR1) (912-984 residues), HR2 (1163-1213 residues), TM domain (1213-1237 residues), and cytoplasm domain (1237S). Both the
S1  and  S2  subunits  actively  take  part  in  receptor  binding  and  membrane  fusion  during  the  infection.  protein  trimers  based  on  the  structure  of
coronavirus S protein monomers, the S1, and S2 subunits form the bulbous head and stalk region [73]. Cryo-electron microscopy has revealed the
atomic structure of the SARS-CoV-2 trimeric S protein, exhibiting several conformations of the S with the RBD domain in open and closed states
[73].
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The SARS-CoV-2 genome has 23 mutations, including the
critical N501Y mutation in the RBD region of the spike protein
[74], The N501Y mutation has mostly been discovered to boost
the human ACE2 receptor binding to the SARS-CoV-2 spike
protein,  which  directly  contributes  to  this  variation's
contagiousness.  9  A  P681H  mutation  near  the  S1/S2  furin
cleavage  site  of  the  B.1.1.7  variant  could  change  the  rate  of
S1/S2 dissociation and the binding efficiency to the target cell
membrane  [74].  Beta  variants  have  E484K  and  N501Y
mutations  in  common  with  alpha  variants.  The  variant  is
crucial because it can evade the host antibodies that recognize
both the Receptor Binding Domain and the N-terminal regions
of  the  spike  protein  [75].  Similarly,  three  critical  mutations
exist in the gamma variant (K417T, E484K, and N501Y) found
within the S protein Receptor Binding Domain. The ability of
an antibody (from natural infection or vaccination) to identify
and  eradicate  the  virus  is  adversely  affected  by  gamma
variations.  The  E484K  spike  mutation  has  been  linked  to
patients  diagnosed  with  SARS-CoV-2  re-infection,
necessitating  additional  research  into  these  mutations  to
develop effective vaccines and antibody-based treatments [76].
The  mutations  in  spike  proteins  reported  are  A67V,  Δ69-70,
T95I,  G142D,  Δ143-145,  Δ211,  L212I,  ins214EPE,  G339D,
S371L,  S373P,  S375F,  K417N,  N440K,  G446S,  S477N,
T478K,  E484A,  Q493R,  G496S,  Q498R,  N501Y,  Y505H,
T547K,  D614G,  H655Y,  N679K,  P681H,  N764K,  D796Y,
N856K,  Q954H,  N969K,  L981F  [77].  These  factors,  in
association with antibody evasion, may also have supported its
dominance [78].

The delta/B.1.617.2 genome contains 13 mutations (15 or
17,  according  to  other  sources,  depending  on  whether  more
prevalent  mutations are included).)  that  cause changes in the
amino-acid  sequences  of  the  proteins  it  encodes.  The  delta
strains are the other variants of concern, formed by additional
mutations  in  the  genome  that  make  the  protein  three-
dimensional  distinct  from  the  mother  variant.  The  major

variations observed in spike proteins of the delta variants are
T19R, (G142D), Δ156-157, R158G, L452R, T478K, D614G,
P681R, and D950N. The substitution at position 614, the major
variation D614G, affects the infectivity and immunogenicity of
the  virus  and  is  common  in  many  variants  of  SARS-CoV2
reported so far.  In T478K, the Tyr residue at  position 478 is
replaced by a Lys.  Similarly,  L452R substitution results  in a
diminished immune system's capacity for identification and a
greater affinity of the spike protein for the ACE2 receptor. It is
thought  that  the P681R mutation will  make the variant  more
infectious at the cell level by allowing the S precursor protein
to be cut into the active S1/S2 structure [79]. Recipients with a
low  antibody  response  are  more  susceptible  to  reinfection,
whereas those with a good antibody response have a sterilized
immunity. These results demonstrate that molecular signatures
linked  to  vaccine-induced  immune  responses  could  be
exploited to create biomarkers for the development of vaccine
strategies  [80].  Viruses  can  be  studied  at  several  levels  of
biological  organization,  ranging  from  the  fundamental
processes  of  genome  replication,  gene  expression,  and
encapsidation to worldwide pandemics. All of these levels are
distinct,  but  they  are  linked  by  the  presence  of  threshold
conditions that permit the development of a capsid, the loss of
genetic information, or the spread of an epidemic [81].

Over  the  last  12  months,  there  was  a  sudden  increase  in
covid  cases  in  China  and Asia  Pacific  with  BF.7  could  have
had these  mutations  in  combination with  either  all  or  maybe
any three with R346T as the common among all recombination
events. However, the Omicron BF.7 lineage has been attributed
to  infections  and  is  deterministically  pathogenic  in  some
countries,  such  as  China  not  in  India  [82].  This  could  be
because  of  the  epigenetic  spectrum  and  herd  immunity
associated  with  those  countries,  along  with  a  diffident  diet
regimen  in  those  countries.  On  the  other  hand,  the  omicron
subvariant  XBB’s  immune  evading  mutations  in  BF.7  in
combination  with  R346T,  K444T,  F486S,  and  D1199N  are
known and may have escaped immunity [83] (Table 1).

Table 1. List of variants and mutations associated with various lineages. The latest BF.7 and XBB are not dealt with due to
nonavailability of complete data.

S.No. NCBI Accession Lineage Important Mutations
Putative
Variant

1 -MZ780476.1- B.1.351 L18F,D80A,D215G,R246I,K417N,E484K,N501Y,D614G,A701V Beta
2 -MZ433432.1- B.1.351 L18F,D80A,D215G,R246I,K417N,E484K,N501Y,D614G,A701V Beta
3 -CAJZLP020000001.1- P.2 E484K, D614G,V1176F Zeta
4 -CAJFWK010000002.1- P.2 E484K, D614G,V1176F Zeta

5 -MW562722.1-
B.1.1.7  &Q
lineages N501Y Alpha

6 -MT671817.1- B.1.1.7 A570D,P681H,T716I,S982A,D1118H Alpha
7 -MZ297238.1- XD - Deltacron
8 -MZ558096.1- XD - Deltacron

9 -MZ043010.1-

B.1.1.529,
BA.1, BA.1.1,
BA.2

A67V, del69-70, T95I, del142-144, Y145D, del211, L212I, ins214EPE, G339D, S371L,
S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A Omicron

10 -OM065378.1-
BA.5,BA.3,
BA.4

Q493R,  G496S,  Q498R,  N501Y,  Y505H,  T547K,  D614G,  H655Y,  N679K,  P681H,
N764K, D796Y, N856K, Q954H, N969K, L981F Omicron

11 -MZ427312.1- P.1 E484K, K417T & N501Y Gamma
12 -MW621433.1- P.1 L18F,T20N,P26S,D138Y,R190S,K417T,E484K,N501Y,H 655Y,T1027I Gamma
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S.No. NCBI Accession Lineage Important Mutations
Putative
Variant

13 -MZ283644.1- P.1 L18F,T20N,P26S,D138Y,R190S,K417T,E484K,N501Y,H 655Y,T1027I Gamma
14 -ON017446.1- P.2 E484K, D614G,V1176F Zeta
15 -ON017450.1- P.2 E484K, D614G,V1176F Zeta

16 -MZ297238.1-
B.1.617.2  &
AY  lineages G142D,T19R,R158G,L452R,T478K,D614G,P681R,D950N,E156del,F157del Delta

17 -OK189649.1-
B.1.617.2  and
AY lineages D614G,T478K,L452R,P681R Delta

18 -OU577055.1-
B.1.617.2  and
AY lineages D614G,T478K,L452R,P681R Delta

CONCLUSION

COVID-19  has  been  the  century’s  most  destructive
pandemic.  As  the  variants  of  concern  and  variants  of
significance are heralding nature, there is an inherent need to
bring  collaborative  convergence  among  scientists  so  that  we
could combat future pandemics such as COVID-19. A question
remains about whether these emerging variants could allow us
to define the advent of pathogenesis and whether or not we are
prepared! This could only be established in the near future.
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